What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments
نویسندگان
چکیده
Estimating the expected size of the largest earthquake on a given fault is complicated by dynamic rupture interactions in addition to geometric and stress heterogeneity. However, a statistical assessment of the potential of seismic events to grow to larger sizes may be possible based on variations in magnitude distributions. Such variations can be described by the b-value, which quantifies the proportion of smallto large-magnitude events. The values of b vary significantly if stress changes are large, but additional factors such as geometric heterogeneity may affect the growth potential of seismic ruptures. Here, we examine the influence of fault roughness on b-values, focal mechanisms, and spatial localization of laboratory acoustic emission (AE) events during stick-slip experiments. We create three types of roughness on Westerly granite surfaces and study AE event statistics during triaxial loading of the lab faults. Because both roughness and stress variations are expected to influence b, we isolate roughness contributions by analyzing AEs at elevated stresses close to stickslip failure. Our results suggest three characteristics of seismicity on increasingly rough faults: (1) seismicity becomes spatially more distributed, (2) b-values increase, and (3) focal mechanisms become more heterogeneous, likely caused by underlying stress field heterogeneity within the fault zones. Localized deformation on smooth faults, on the other hand, promotes larger rupture sizes within the associated homogeneous stress field, which is aligned with the macroscopic stress orientation. The statistics of earthquake magnitude distributions may help quantify these fault states and expected rupture sizes in nature.
منابع مشابه
Experimental and Numerical Model Studies of Frictional Instability Seismic Sources
Stick-slip frictional instability is widely regarded as a viable mechanism for crustal earthquakes, particularly because of the way that it can be incorporated into the notion of earthquakes as episodic unstable slip events along preexisting zones or planes of weakness represented by faults in the Earth. In this thesis, detailed laboratory observations of stick-slip events generated on a simula...
متن کاملSeismic moment tensor and b value variations over successive seismic cycles in laboratory stickslip experiments
The formation of fault damage due to slip under high normal stresses can rarely be monitored under in situ conditions. To advance our understanding of microfracture processes, we investigated stick-slip events on Westerly granite samples containing the following: (1) a planar saw cut fault and (2) a fault developed from a fresh fracture surface. We examined temporal changes of seismic moment te...
متن کاملPreslip and cascade processes initiating laboratory stick slip
Recent modeling studies have explored whether earthquakes begin with a large aseismic nucleation process or initiate dynamically from the rapid growth of a smaller instability in a “cascade-up” process. To explore such a case in the laboratory, we study the initiation of dynamic rupture (stick slip) of a smooth saw-cut fault in a 76mm diameter cylindrical granite laboratory sample at 40–120MPa ...
متن کاملNonlinear dynamical triggering of slow slip on simulated earthquake faults with implications to Earth
[1] Among the most fascinating, recent discoveries in seismology are the phenomena of dynamically triggered fault slip, including earthquakes, tremor, slow and silent slip—during which little seismic energy is radiated—and low frequency earthquakes. Dynamic triggering refers to the initiation of fault slip by a transient deformation perturbation, most often in the form of passing seismic waves....
متن کاملModeling of Fault Co-seismic Displacement Fields in Elastic Environments Based on Spherical Dislocation Theory
This research is based on the modeling of co-seismic deformations due to the fault movement in the elastic environments, and we can obtain the deformations generated in the faults. Here, modeling of the co-seismic displacement field is based on the analytical method with two spherical dislocation model and half-space dislocation model. The difference in displacement field from two spherical and...
متن کامل